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Abstract
We study pore-blockade times for a translocating polymer of length N , driven by a field E
across the pore in three dimensions. The polymer performs Rouse dynamics, i.e., we consider
polymer dynamics in the absence of hydrodynamical interactions. We find that the typical time
for which the pore remains blocked during a translocation event scales as ∼N (1+2ν)/(1+ν)/E ,
where ν � 0.588 is the Flory exponent for the polymer. We show, in line with our previous
work, that this scaling behavior stems from polymer dynamics in the immediate vicinity of the
pore—in particular, the memory effects in the polymer chain tension imbalance across the pore.
This result, like numerical results from several other groups, violates the lower bound
∼N1+ν/E suggested earlier in the literature. We discuss why this lower bound is incorrect and
show, on the basis of the conservation of energy, that the correct lower bound for the
pore-blockade time for field-driven translocation is given by ηN2ν/E , where η is the viscosity
of the medium surrounding the polymer.

1. Introduction

Molecular transport through cell membranes is an essential
mechanism in living organisms. Often, the molecules are
too long, and the pores in the membranes too narrow, to
allow the molecules to pass through as a single unit. In such
circumstances, the molecules have to deform themselves in
order to squeeze—i.e., translocate—themselves through the
pores. DNA, RNA and proteins are such naturally occurring
long molecules [1–5] in a variety of biological processes.
Translocation is also used in gene therapy [6, 7], and in delivery
of drug molecules to their activation sites [8]. Consequently,
the study of translocation is an active field of research: as a
cornerstone of many biological processes, and also due to its
relevance for practical applications.

More recently, translocation has found itself at the
forefront of single-molecule-detection experiments [9–11], as
new developments in the design and fabrication of nanometer-
sized pores and etching methods may lead to cheaper and
faster technology for the analysis and detection of single
macromolecules. In these experiments, charged polymeric

molecules, suspended in an electrolyte solution, are initially
located on one side of a membrane. The membrane is
impenetrable to the molecule except for a nanometer-sized
pore. Between the two different sides of the membrane, a DC
voltage difference is then applied, which drives the molecule
through the pore. When the molecule enters the pore, it affects
the electrical resistivity of the circuit, leading to a dip in the
electric current supplied by the voltage source. The magnitude
and the duration of these dips have proved to be very effective
in determining the size and the length of the molecule. The
usage of protein pores (modified α-haemolysin, mitochondrial
ion channel, nucleic acid binding/channel protein etc) and the
etching of specific DNA sequences inside the pores [6, 12] have
opened up promising new avenues of fast, simple and cheap
technology for single macromolecule detection, analysis and
characterization, perhaps even allowing DNA sequencing at
the nucleotide level.

The subject of this paper is (charged) polymer transloca-
tion in three dimensions through a narrow pore in an otherwise
impenetrable membrane placed at z = 0, as the polymer is
driven by a DC voltage across the pore. Our interest is in the

0953-8984/08/095224+07$30.00 © 2008 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/20/9/095224
http://stacks.iop.org/JPhysCM/20/095224


J. Phys.: Condens. Matter 20 (2008) 095224 H Vocks et al

monomer
monomer

+V –V

monomer 1N
s

Figure 1. Snapshot of a translocating polymer in a two-dimensional
projection of our three-dimensional system. Across the pore of size
unity a voltage difference 2 V is applied. The monomer located
within the pore is labeled s.

scaling behavior for the typical pore-blockade time during a
translocation event with polymer length N . In practice, the
electric field due to the applied voltage decays rapidly with in-
creasing distance from the pore, and for simplicity it is often
assumed that only those polymer segments residing within the
pore feel the driving force due to the field. For our theory and
simulations too, we consider a polymer which only experiences
a force acting on its monomers that reside in the pore, as illus-
trated in figure 1.

To substantiate our theoretical analysis we use extensive
Monte Carlo simulations with a three-dimensional self-
avoiding lattice polymer model. For the voltage difference
across the pore we choose

V (z) =

⎧
⎪⎨

⎪⎩

+V (z � −1)

0 (z = 0)

−V (z � 1).

(1)

Thus, during translocation through the pore, the energy gained
by each monomer carrying a charge q , in dimensionless units,
is given by �U = 2qV/kBT . From now on, favoring
notational simplicity, we choose both q and kBT to be unity.
Since we also choose the lattice spacing to be unity in our
simulations, the strength of the electric field acting on each
monomer within the pore is given by E = V .

Details of the lattice polymer model used in this paper can
be found in [13, 14]: the polymer moves through a sequence
of random single-monomer hops to neighboring lattice sites.
These hops can either be ‘reptation’-moves, along the contour
of the polymer, or Rouse moves, in which the monomer
jumps ‘sideways’ and changes the contour. The definition of
time used throughout this paper is such that every monomer
attempts a ‘reptation’-move as well as a ‘sideways’-move with
rate unity. There is no explicit solvent in our analysis, i.e., the
polymer performs Rouse dynamics.

Our conventions to study this problem, all throughout this
paper, are the following. We place the membrane at z = 0.
We fix the middle monomer (monomer number N/2) of a
polymer of total length N at the pore, apply the voltage as in
equation (1) and thermalize the polymer. At t = 0 we release
the polymer and let translocation commence. We define the
typical time when the polymer leaves the pore as the dwell time
τd: it scales with N in the same way as the pore-blockade time
in a full (field-driven) translocation event.

This problem has recently been studied in [15], in which
a lower bound ∝N1+ν/E has been argued for τd. This
lower bound was derived in the limit of unimpeded polymer
movement, i.e., for an infinitely wide pore, or equivalently,
in the absence of the membrane. In [15] the authors also
suggested that the dynamics of translocation is anomalous (see
also [16] in this context).

In the recent past, some of us have been investigating
the microscopic origin of the anomalous dynamics of
translocation. We have set up a theoretical formalism, based on
the microscopic dynamics of the polymer, and showed that the
anomalous dynamics of translocation stem from the polymer’s
memory effects, in the following manner. Translocation
proceeds via the exchange of monomers through the pore:
imagine a situation when a monomer from the left of the
membrane translocates to the right. This process increases
the monomer density in the right neighborhood of the pore,
and simultaneously reduces the monomer density in the left
neighborhood of the pore. The local enhancement in the
monomer density on the right of the pore takes a finite time
to dissipate away from the membrane along the backbone of
the polymer (similarly for replenishing monomer density on
the left neighborhood of the pore). The imbalance in the
monomer densities between the two local neighborhoods of
the pore during this time causes an enhanced chance of the
translocated monomer to return to the left of the membrane,
thereby giving rise to memory effects. The ensuing analysis
enabled us to provide a proper microscopic theoretical basis
for the anomalous dynamics. Further theoretical analysis
then led us to the conclusion that in the case of unbiased
translocation, i.e., when the polymer is not subjected to an
external force, the dwell time scales with length as τd ∼
N2+ν [13, 17, 18], both in two and three dimensions. Our
approach based on the polymer’s memory effects also works
beautifully for pulled translocation, for which a force F is
applied at the head of the polymer: we showed that if F Nν

is sufficiently large, then the dwell time scales as τd/N2+ν ∼
(F Nν)−1 [19]. In this work, we push ahead with the same
formalism to demonstrate that it reveals the physics of field-
driven translocation too, thus providing a unified underlying
theoretical basis for translocation, based on the theory of
polymer dynamics.

Returning to the lower bound for the scaling of the dwell
time with polymer length N for field-driven translocation as
proposed in [15], we note that subsequent numerical studies
did not immediately settle the scaling for τd with N , including
the one by the authors of [15] themselves. In table 1 we present
a summary of the existing numerical results on the exponent
for the scaling of τd with N for field-driven translocation. All
results quoted are for self-avoiding polymers in the absence of
hydrodynamical interactions in the scaling limit.

More recently, this lack of consensus prompted three
of us to investigate the issue of field-driven translocation
in two dimensions, via a proxy problem, namely, polymer
translocation in three dimensions out of strong planar
confinements [18]. We showed that the actual lower bound
for τd for field-driven translocation is given by ηN2ν/E , where
η is the viscosity of the surrounding medium. This inequality
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Table 1. Existing numerical results on the exponent for the scaling
of τd with N for field-driven translocation. Note that the proposed
lower bound 1 + ν of [15] is 1.75 and 1.59 in two and three
dimensions, respectively.

Authors Two dimensions Three dimensions

Kantor et al [15] 1.53 ± 0.01 —
Luo et al [20] 1.72 ± 0.06 —
Cacciuto et al [21] 1.55 ± 0.04 —
Wei et al [22] — 1.27
Milchev et al [23] — 1.65 ± 0.08
Dubbeldam et al [24] — 1.5

is derived from the principle of conservation of energy: it was
shown in [18] that although the presence of the memory effects
suggests that the scaling of τd could behave as N (1+2ν)/(1+ν) ,
since (1 + 2ν)/(1 + ν) < 2ν in two dimensions, conservation
of energy overrides the memory effects in the polymer—
high precision simulation data suggested, in accordance with
those of [15, 21] that the actual scaling of τd for field-driven
translocation in two dimensions is given by τd ∼ N2ν . In three
dimensions 2ν < (1 + 2ν)/(1 + ν), implying that in three
dimensions τd ∼ N (1+2ν)/(1+ν) , which is the central result of
this paper.

This paper is organized in the following manner. In
section 2 we derive the lower bound N2ν for τd for field-
driven translocation. In section 3.1 we discuss a method
to measure the polymer’s chain tension at the pore. In
section 3.2 we analyze the memory effects in the imbalance of
the polymer’s chain tension at the pore. In section 4 we discuss
the consequence of these memory effects on the translocation
velocity v(t), and obtain the scaling relation of τd with the
polymer length N . We end this paper with a discussion in
section 5.

2. Lower bound for τd for field-driven translocation

As noted in section 1, a lower bound for the dwell time
τd ∼ N1+ν/E has been proposed in [15]. The underlying
assumption behind this result is that, with or without an applied
field, the mobility of a polymer translocating through a narrow
pore in a membrane will not exceed that of a polymer in bulk
(i.e., in the absence of the membrane). This mobility is then
obtained under two more assumptions for the behavior of a
polymer under a driving field:

(i) To mimic the field acting on a translocating polymer, the
field on the polymer in bulk has to act on a monomer
whose position along the backbone of the polymer
changes continuously in time. As a result, there is no
incentive for the polymer to change its shape from its bulk
equilibrium shape, i.e., the polymer can still be described
by a blob with radius of gyration ∼Nν in the appropriate
dimension.

(ii) The polymer’s velocity is proportional to DE , where E is
the applied field, and D is the diffusion coefficient scaling
as D ∼ 1/N for a Rouse polymer.

Of these two assumptions, note that (ii) is obtained as
the steady state solution of the equation of motion of a Rouse

polymer, in bulk, with uniform velocity and vanishing internal
forces, see for instance [25] (equation VI.10). We have already
witnessed in many occasions [13, 15–17, 19, 24, 26, 27]
that the dynamics of translocation through a narrow pore
is anomalous (subdiffusive), as a consequence of the strong
memory effects discussed in the previous section, and also
that these memory effects are so strong that the velocity of
translocation is not constant in time [18, 19]. The anomalous
dynamics and the memory effects are crucial ingredients that
question the validity of the lower bound N1+ν for τd for field-
driven translocation.

It is however possible to derive a lower bound for
τd for field-driven translocation, based on the principle of
conservation of energy. Consider a translocating polymer
under an applied field E which acts only at the pore. By
definition, the N monomers of the polymer translocate through
the pore in a time τd. The total work done by the field in
this time τd is then given by E N . During translocation, each
monomer travels over a distance of order ∼Rg , leading to an
average monomer velocity vm ∼ Rg/τd. The rate of loss
of energy due to the viscosity η of the surrounding medium
per monomer is given by ηv2

m. For a Rouse polymer, the
frictional force on the entire polymer is a sum of frictional
forces on individual monomers, leading to the total energy
loss due to the viscosity of the surrounding medium during the
entire translocation event scaling as ∼Nτdηv2

m = NηR2
g/τd.

This loss of energy must be less than or equal to the total
work E N done by the field, which yields us the inequality
τd � ηR2

g/E = ηN2ν/E .5

3. Memory effects in the chain tension perpendicular
to the membrane

A translocating polymer can be thought of as two segments of
polymers tethered at the pore, while the segments are able to
exchange monomers between them through the pore. In [17]
we developed a theoretical method to relate the dynamics of
translocation to the imbalance of chain tension between these
two segments across the pore. The key idea behind this method
is that the exchange of monomers across the pore responds to
φ(t), this imbalance of chain tension; in its turn, φ(t) adjusts to
v(t), the transport velocity of monomers across the pore. Here,
v(t) = ṡ(t) is the rate of exchange of monomers from one side
to the other.

The memory effects discussed in section 1 in terms of
relaxation of excess monomers (or the lack of monomers)
in the immediate vicinity of the pore translates immediately
to that of the imbalance of the chain tension across the
pore—local accumulation of excess monomers reduce the
chain tension, while local lack of monomers enhance it.
Quantitatively speaking, in the presence of memory effects, the
chain tension imbalance across the pore φ(t) and the velocity
of translocation v(t) are related by

φ(t) = φt=0 +
∫ t

0
dt ′μ(t − t ′)v(t ′) (2)

5 For unbiased translocation, E N in this argument is to be replaced by the
difference in free energy (or entropy) of a threaded polymer, corresponding to
s = N/2, and the translocated polymer, corresponding to s = N . This leads
to the inequality τd � ηN1+2ν .
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via the (field-dependent) memory kernel μ(t), which could
be thought of as time-dependent ‘impedance’ of the system.
Using the Laplace transform, this relation could be inverted
to obtain v(t) = ∫ t

0 dt ′a(t − t ′)[φt=0 − φ(t ′)], where a(t)
can be thought of as the ‘admittance’ of the system. In the
Laplace transform language, these are related to each other as
μ(k) = a−1(k), where k is the Laplace variable representing
inverse time [13, 17–19].

3.1. Chain tension perpendicular to the membrane

Measuring chain tension directly is difficult. We therefore use a
method developed earlier [18, 19] to monitor the chain tension
near the pore.

By definition, the chain tension imbalance φ(t) is the
difference of the chain tensions on the right and the left side
of the pore: φ(t) = �R(E, t) − �L(E, t). Both �R(E, t) and
�L(E, t) are functions of the applied electric field E across
the pore. Note, from the applied potential (1), that the field E
acts on the monomers at site z = −1 towards the pore, while
it acts on those at site z = 1 away from the pore. Using the
convention that E < 0 (resp. E > 0) implies a field acting
towards (resp. away from) the membrane, we have

�(E, t = 0) =
{

�L (t = 0) (E < 0)

�R(t = 0) (E > 0).
(3)

Now consider a different problem, where one end of a
polymer is tethered to a fixed membrane, yet the number of
monomers are allowed to spontaneously enter or leave the
tethered end, under the effect of an electric field E . Then,
following the methodology described in [18, 19], we have

�(E, t = 0) = kBT ln
P+
P−

, (4)

where P− (resp. P+) is the probability that the left (or the
right) polymer segment has one monomer less (resp. one extra
monomer).

Note that even for E = 0, as already stressed in [19], there
is nonzero chain tension �0 at the pore, due to the presence of
the membrane. A polymer’s free energy close to a membrane
is higher than its free energy in bulk. In other words, the
membrane repels the polymer, and as a result, for a polymer
with one end tethered to a membrane, the monomers close to
the membrane are more stretched than they would be in the
bulk.

For a translocating polymer equation (4) cannot be used,
so to compute �R(t) and �L(t) one needs a suitable proxy.
In the cases of unbiased translocation [13, 17], translocation
with a pulling force [19] and translocation out of planar
confinements [18], we have seen that the center-of-mass
distance of the first few, say 4 to 5 monomers from the
membrane provides an excellent proxy for �. In this paper
we follow the same line. The average distance 〈Z (4)(t = 0)〉
is plotted as a function of the chain tension �(E, t = 0) for
various values of E in figure 2. This figure shows that under
an applied field, �(E, t = 0) is a reasonably linear function
well-proxied by Z (4). The positive curvature seen in figure 2,

1.1 1.15 1.2 1.25 1.3 1.35 1.4

<Z
(4)

(t=0)>

0

0.5

1

1.5

Φ
(E

,t=
0)

Figure 2. 〈Z (4)(t = 0)〉 versus �(E, t = 0), for N/2 = 200 and
electric field values E = −0.5, −0.25, −0.1, −0.05, 0, 0.05, 0.1,
0.25 and 0.5, respectively. The angular brackets for 〈Z (4)(t = 0)〉
indicate an average over 32 000 polymer realizations, which are also
used to obtain �(E, t = 0).

i.e., the deviation from linearity, is seen only for E > 0.
We believe that this is partly due to the saturation of Z (4).
(By definition, in our lattice model the distance of the center-
of-mass of the first 4 monomers from the membrane cannot
exceed (1 + 2 + 3 + 4)/4 = 2.5.)

3.2. Memory effects in the chain tension

From equation (2), the behavior of the memory kernel μR(t)
for the polymer segment on the right side of the membrane
can be obtained with a sudden injection of p extra monomers
through the pore, corresponding to an impulse current v(t) =
pδ(t). Physically, v(t) = pδ(t) with p > 0 (resp. p < 0)
means that we tether a polymer of length N halfway at the
pore at t → −∞, let it thermalize until t = 0, and then inject
p extra monomers at the tethered end of the right (resp. left)
segment at t = 0. We then ask for the time-evolution of the
mean response 〈δ�R(t)〉, where δ�R(t) is the shift in chemical
potential for the right segment of the polymer at the pore. This
means that for the translocation problem (with both right and
left segments), we would have φ(t) = δ�R(t)−δ�L(t), where
δ�L(t) is the shift in chemical potential for the left segment at
the pore due to an opposite input current to it.

In earlier works [13, 17], using v(t) = pδ(t) for a polymer
of length N tethered halfway at the pore as described in the
above paragraph, three of us showed that for unbiased polymer
translocation, i.e., for E = 0, this mean response, and hence
μ(t) takes the form μ(t) ∼ t−α exp[−t/τRouse(N/2)] (note
that for E = 0 there is a trivial symmetry between the right
and the left segment of the polymer, hence μR(t) = μL(t) ≡
μ(t)).

When the electric field is applied at the pore, and the
same monomer injection method is used to probe the memory
kernels μR(t) and μL(t), we expect the above arguments to
hold again: since the field is applied very locally at the base
of the tethered polymer segments, it does not destroy the
broader structure of the polymer. However, we do expect to see
deviations from the t−α exp[−t/τRouse(N/2)] at short times.
Indeed, we have confirmed this picture—for various field

4



J. Phys.: Condens. Matter 20 (2008) 095224 H Vocks et al

10
0

10
1

10
2

10
3

10
4

10
5

t

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

<
Z

(4
) (∞

)-
Z

(4
) (t

)>
E = -0.50
E = -0.25
E =  0.0
E =  0.50

Figure 3. Probing the memory kernels by 〈Z (4)(∞) − Z (4)(t)〉
following monomer injection at the pore corresponding to
v(t) = pδ(t), with |p| = 5. Physically, v(t) = pδ(t) with p > 0
(resp. p < 0) means that we tether a polymer of length N halfway at
the pore at t → −∞, let it thermalize until t = 0, and then introduce
|p| extra monomers to the right (resp. left) segment at the tether
point at t = 0. Following our notation in equation (3), the E < 0
data (resp. E > 0 data) correspond to μL(t) (resp. μR(t)). The data
presented correspond to an average over 500 000 polymer
realizations, with N/2 = 200. The steeper drop at longer times
correspond to the exponential decay exp[−t/τRouse(N/2)]. The solid

line corresponds to the power-law t− 1+ν
1+2ν ≈ t−0.73.

strengths we tracked 〈δ�R(t)〉 and 〈δ�L (t)〉 by measuring the
distance of the average center-of-mass of the first 4 monomers
from the membrane, 〈Z (4)(t)〉, in response to the injection
of extra monomers near the pore at t = 0. Specifically
we consider the equilibrated right and left segments of the
polymer, each of length N/2 = 200 (with the middle
monomer threaded at the pore), adding 5 extra monomers at
the tethered end of the right and the left segment each at
t = 0, corresponding to |p| = 5, bringing the length of each
segment up to N/2 + |p|. Using the proxy 〈Z (4)(t)〉 for both
segments we then track 〈δ�R(t)〉 and 〈δ�L (t)〉, denoting them
by values E > 0 and E < 0 respectively in figure 3. The
deviations from the expected power-law t−(1+ν)/(1+2ν) at short
times and the exp[−t/τRouse(N/2)] at long times makes the
precise identification of the power-law t−(1+ν)/(1+2ν) difficult.
Nevertheless, there is an extended regime where this power-
law can be identified reasonably clearly, yielding us μR(t) =
μL(t) ≡ μ(t) = t−(1+ν)/(1+2ν) exp[−t/τRouse(N/2)].

4. Scaling behavior of τd with N

The memory kernel we obtained in section 3 can be termed as
the ‘static memory kernel’, as it is obtained under the condition
that before the injection of the extra monomers both segments
were thermalized. When the applied field is not too strong,
we can expect the static memory kernel to yield the scaling of
translocation velocity with time, in the following manner.

An inverse Laplace transform of equation (2) yields us

v(k) = φt=0

kμ(k)
− φ(k)

μ(k)
, (5)

where k is the Laplace variable representing inverse
time. Thereafter, using the power-law part of μ(t) ∼

0 2500 5000 7500 1e4
t

0

0.05

0.1

0.15

0.2

0.25

<
Z

(4
) (0

) 
- 

Z
(4

) (t
)> E = 0.05

E = 0.15
E = 0.25

Figure 4. Behavior of [φt=0 − φ(t)] for N = 200 as a function of t ,
shown by means of the proxy variable 〈z(4)(0) − z(4)(t)〉.
demonstrating that [φt=0 − φ(t)] reduces to a constant very quickly:
E = 0.05 (circles), 0.15 (squares), and 0.25 (triangles). To generate
these averages 16 000 individual polymers were unthreaded for each
value of E .

t−(1+ν)/(1+2ν), i.e., μ(k) ∼ k(1+ν)/(1+2ν)−1, and Laplace-
inverting equation (5), we get

v(t) =
∫ t

0
dt ′(t − t ′)−

1+3ν
1+2ν

[
φt=0 − φ(t ′)

]
. (6)

If φ(t) goes to a constant �= φt=0, then equation (6) reduces to

v(t) ∼ t− ν
1+2ν , i.e., s(t) = N/2 +

∫ t

0
dt ′ v(t ′) ∼ t

1+ν
1+2ν , (7)

where [s(t)− N/2] is the distance unthreaded after time t ;6 the
N/2 appears in equation (7) as s(0) = N/2.

In figure 4 we show the behavior of [φt=0 − φ(t)] by
means of the proxy variable 〈z(4)(0) − z(4)(t)〉 for E = V =
0.05, 0.15, and 0.25 respectively, where z(4) is the difference
between the Z (4) values of the right and left segment of the
polymer, i.e., z(4)(t) = Z (4)

R (t) − Z (4)
L (t). Indeed the quantity

[φt=0 − φ(t)] approaches a constant rather quickly. We also
note that the relation between this constant and the applied field
E is almost linear.

For strong fields, there is no a priori reason that the
dynamics can still be described by the static memory kernel
instead of a suitably replacing ‘dynamic memory kernel’, but
we find that the scaling s(t) ∼ t (1+2ν)/(1+ν) is obeyed for fairly
strong fields as well: in figure 5 we plot the average time
〈t〉 to unthread a distance s to show this scaling. Note the
strong finite-size effects for the scaling behavior as shown by
the deviation from the t (1+2ν)/(1+ν) for larger values of s. The
presence of such strong finite-size effects indicates that without
the aid of s(t) versus t curves, determining the scaling of τd

with N will almost certainly lead to erroneous identification of
the scaling laws—we believe that these finite-size effects are
responsible for the wide range of existing numerical scaling

6 Note that with φ(t) a constant, strictly speaking, the integral (6) does
not converge. The divergence stems from the assumption that μ(t) ∼
t−(1+ν)/(1+2ν) holds all the way to t → 0. This is clearly not true as can
be seen from figure 3, which provides the required cutoff for the convergence
of the integral (6).
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Figure 5. The average time 〈t〉 to unthread a distance s for three
different field strengths, for N = 400 (average over 16 000 polymer
realizations for each field), N = 800 (average over 16 000 polymer
realizations for each field), and N = 1200 (5000 polymer
realizations for E = 0.05, and 7500 polymer realizations each for
E = 0.15 and E = 0.25). The data for N = 800 correspond to real
time value, while the data for N = 400 and N = 1200 have been
shifted by ∓500 units along the x-axis for clarity. The solid line has
been added for a guide to the eye.

results, as summarized in table 1. Nevertheless, figure 5 shows
that these finite-size effects do not increase linearly with N ,
leading us to the scaling for τd as

τd ∼ N (1+2ν)/(1+ν)/E, (8)

which is obtained from the condition that s(τd) = N . For the
above analysis to hold, the dwell time must be less than τRouse,
which equation (8) confirms. Note that the E-dependence of
equation (8) is only numerically obtained from figure 5. Note
also that the curves in figure 5 for E = 0.05 tend to ‘sag’ a
bit. We attribute this to our numerically inspired definition of
s(〈t〉), as the mean time to unthread a distance s, as opposed
to, e.g., the numerically less favorable measure of distance
〈s(t)〉, i.e.,the monomer which is most likely to reside in the
pore at time t . At small fields, the polymer has ample time for
fluctuations, pushing the time of first arrival up. Numerically,
for E = 0.15 and 0.25, the exponent ∂[log s(t)]/∂(log t) is
found to be 0.73±0.02, in agreement with the theoretical value
(1 + ν)/(1 + 2ν). The sagging and finite-size effects discussed
above cause the apparent exponent to be slightly larger, ranging
from 0.74 to 0.79, for E = 0.05.

With decreasing field strength, especially in the range
where the thermal fluctuations are comparable to the work
done by the field to translocate the entire polymer, given by
E N � kBT = 1, one should obtain a crossover from the above
scaling (8) to τd ∼ N2+ν for unbiased translocation [13, 17].
This suggests that if τd/N2+ν is plotted as a function of E N ,
then one should obtain a scaling collapse; i.e., there exists a
scaling function f such that τd = N2+ν f (E N). However, E N
as a scaling variable is simply numerically inconsistent with
figure 5 and equation (8). Instead τd = N2+ν f (E, N) is the
proper description of the situation, with f (E, N) approaching
a constant for E → 0, N → ∞ and f (E, N) behaving as
E−1 N−ν−1/(1+ν) for E ∼ O(1) and N → ∞. Note that E
in this paragraph should be interpreted as the dimensionless
quantity qV/(kBT ).
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Figure 6. Data collapse in terms of x = E N ν+1/(1+ν) and
y = τd/N2+ν for various fields. The mean unthreading times τd have
been obtained with at least 1000 polymers (up to 32 000 for smaller
N values) for each N and field strength E : the statistical error bars
are smaller than the size of the symbols. The solid line y ∼ 1/x for
moderate field strengths in support of equation (8) has been added for
a guide to the eye.

To demonstrate the scaling behavior of equation (8) for
E � O(1), we plot τd/N2+ν as a function of E Nν+1/(1+ν) in
figure 6. Keeping in mind that this way of plotting the data does
not necessarily yield a data collapse at small but nonzero E , as
discussed above, we also plot several data points for small E ,
in order to demonstrate that for E → 0 our results in this paper
are consistent with that of unbiased translocation [13, 17, 18].

5. Discussion

In this paper, we studied polymer translocation in three di-
mensions through a narrow pore in an otherwise impenetra-
ble membrane, as the polymer is driven by a field E across
the pore. The polymer performs Rouse dynamics, i.e., we
considered polymer dynamics in the absence of hydrodynam-
ical interactions. We found that the typical time the pore re-
mains blocked during a translocation event, for moderate field
strengths scales as ∼N (1+2ν)/(1+ν)/E , where ν � 0.588 is
the Flory exponent for the polymer. In line with our previ-
ous works, we showed that this scaling behavior stems from
the polymer dynamics at the immediate vicinity of the pore—
in particular, the memory effects in the polymer chain tension
imbalance across the pore [13, 17–19]. We also showed that
our results in this paper are consistent with that of unbiased
translocation [13, 17, 18] in the limit E → 0.

The above results for finite E , along with the numerical
results by several other groups, violate the lower bound
∼N1+ν/E suggested earlier in the literature [15]. We also
discussed why this lower bound is incorrect and showed, based
on conservation of energy, that the correct lower bound for the
pore-blockade time for field-driven translocation is given by
ηN2ν/E , where η is the viscosity of the medium surrounding
the polymer. Our theoretical analysis has been supported by
high precision computer simulation data, generated with a
three-dimensional self-avoiding lattice polymer model.
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Having worked out the physics of field-driven poly-
mer translocation in the absence of hydrodynamical in-
teractions, it is worthwhile to reflect on the scaling of
pore-blockade times as a function of the polymer length
N in the presence of hydrodynamical interactions. Hy-
drodynamical interactions will modify the memory ker-
nel μ(t)—changing it from t−(1+ν)/(1+2ν) exp(−t/τRouse) to
t−(1+ν)/(3ν) exp(−t/τZimm) [13, 17], where τZimm is the Zimm
relaxation time, scaling as N3ν in good solvent for a poly-
mer of length N . This implies that the pore-blockade time
will behave as N3ν/(1+ν) under the influence of hydrodynam-
ical interactions. In this context we note that the scaling of the
pore-blockade time has been experimentally measured to scale
as N1.26±0.07 [11]. In the scaling limit 3ν/(1 + ν) � 1.11.
The value for ν suggested in [11] is 0.611 ± 0.016, for which
3ν/(1 + ν) � 1.14 ± 0.02, a bit closer to 1.26 ± 0.07. For a
physical explanation of the scaling of the pore-blockade times
with polymer length, the authors of [11] arrived at an answer
2ν using a macroscopic view of the translocating polymer, as-
suming that the translational velocity of the center-of-mass of
the untranslocated part is constant in time, and (implicitly) that
the memory kernel is a δ-function. Our analysis in this paper,
as well as in [13, 17–19] based on memory effects, therefore,
casts serious doubts on the physical interpretation of [11]: as
we have repeatedly shown that the velocity of translocation is
not uniform in time, and the same part of the polymer visits the
pore a multitude number of times. Although so far our work
has not incorporated hydrodynamical interactions explicitly, it
is difficult to imagine that introducing hydrodynamical interac-
tions will mysteriously wipe out the entire memory effects in
the polymer.
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